

Algebra II 9

- This Slideshow was developed to accompany the textbook
 - Larson Algebra 2
 - By Larson, R., Boswell, L., Kanold, T. D., & Stiff, L.
 - 2011 Holt McDougal
- Some examples and diagrams are taken from the textbook.

Slides created by Richard Wright, Andrews Academy rwright@andrews.edu

- o Distance Formula
 - $d^2 = AC^2 + BC^2$
 - $d^2 = (x_2 x_1)^2 + (y_2 y_1)^2$

$$od = \sqrt{(x_2 - x_1)^2 + (y_2 - y_1)^2}$$

- Find the distance between(1, -3) and (2, 5)
- What type of triangle is ΔRST if R(2, -2), S(4, 2), T(6, 0)?

$$d = V((-2-1)^2 + (5-(-3))^2) = \sqrt{73} = 8.54$$

 $RS = \sqrt{20}$

ST = √8

 $RT = \sqrt{20}$

Isosceles (remind students that the other choices are scalene and equilateral)

Midpoint formula

$$OM = \left(\frac{x_1 + x_2}{2}, \frac{y_1 + y_2}{2}\right)$$

 \circ Find the midpoint of (1, -3) and (-2, 5)

- Find the equation of a perpendicular bisector
 - 1. Find the midpoint
 - 2. Find the slope
 - 3. Write the equation of the line using the midpoint and the negative reciprocal of the slope

• Find the perpendicular bisector of segment AB if A(-2, 1) and B(1, 4).

- Parabola
 - Shape of the graph of a quadratic equation

• All the points so that the distance to the focus and to the directrix is equal

• Standard Equation of a Parabola (vertex at origin)

• Equation Focus Directrix Axis **Opens**

o $x^2 = 4py$ (0, p) y = -p x = 0 up o $y^2 = 4px$ (p, 0) x = -p y = 0 right

If p is negative, the parabola opens the other direction

- Identify the focus, directrix, and graph $x = 1/8 y^2$
 - Solve for squared term $y^2 = 8 x$
 - Coefficient of non-squared term = 4p
 8 = 4n

$$8 = 4p$$

$$p = 2$$

- Plot the directrix and focus x = -2, (2, 0)
- Plot other points from a x table of values

		l
x	у	
2	-4, 4	
1	$-2\sqrt{2}, 2\sqrt{2}$	

• Write the equation for the parabola.

$$p = 4$$

$$y^2 = 4(4)x \rightarrow y^2 = 16x$$

- Circle
 - Set of points a fixed distance (radius) from the center
- Derivation of equation (center at origin)
 - r = distance from center

•
$$r = \sqrt{(x-0)^2 + (y-0)^2}$$

•
$$r^2 = x^2 + y^2$$

•
$$x^2 + y^2 = r^2$$

- o To graph
 - Find the radius
 - Plot the center (0, 0)
 - Move up, down, left, and right from the center the distance of the radius
 - Draw a good circle
- o Graph $x^2 + y^2 = 16$

• Write the equation of a circle with center at the origin and goes through point (-3, 5)

$$x^{2} + y^{2} = r^{2}$$

 $(-3)^{2} + 5^{2} = r^{2}$
 $9 + 25 = r^{2}$
 $34 = r^{2}$
 $x^{2} + y^{2} = 34$

- Finding a tangent line to a circle
 - Tangent lines are perpendicular to the radius
 - Find the slope of the radius to the point of intersection
 - Use the negative reciprocal of the slope as the slope of the tangent line
 - Use the slope and the point of intersection to write the equation of the line

• Find the equation of the tangent line at (1, 5) to $x^2 + y^2 = 26$

• Set of points so that the sum of the distances to the 2 foci is constant

9.4 GRAPH AND WRITE EQUATIONS OF ELLIPSES

- o Horizontal Ellipse.
 - Center at origin

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$c^2 = a^2 - b^2$$

- Vertical Ellipse.
 - Center at origin

$$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$$

$$c^2 = a^2 - b^2$$

- o Graph Ellipse
 - Write in standard form (find a and b)
 - Plot vertices and covertices
 - Draw ellipse
- Graph $4x^2 + 25y^2 = 100$ and find foci

horizontal $x^2 / 25 + y^2 / 4 = 1$ a = 5; b = 2

Foci: $c^2 = a^2 - b^2$ $c^2 = 25 - 4 = 21$ $c = \sqrt{21}$ $(-\sqrt{21}, 0), (\sqrt{21}, 0)$

- Write the equation for an ellipse with center at (0, 0) and ...
 - a vertex at (0, 5), and a co-vertex at (4, 0)

- Write the equation for an ellipse with center at (0, 0) and ...
 - •A vertex at (-6, 0) and a focus at (3, 0)

• Set of all points so the difference of the distances between a point and the two foci is constant

• Horizontal transverse axis

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

- $c^2 = a^2 + b^2$
- Asymptotes

$$oy = \pm \frac{b}{a}x$$

• Vertical transverse axis

$$c^2 = a^2 + b^2$$

- Asymptotes
- $\circ y = \pm \frac{a}{b} x$

- Graphing Hyperbolas
 - Plot the vertices and "co-vertices"
 - Draw the "box"
 - Draw the asymptotes
 - Draw the hyperbola

o Graph $9x^2 - 16y^2 = 144$

• Write the equation of hyperbola with foci (0, -5) and (0, 5) and vertices at (0, -3) and (0, 3).

vertical

$$c = 5$$
, $a = 3$
 $c^2 = a^2 + b^2 \rightarrow 25 = 9 + b^2 \rightarrow b^2 = 16$
 $y^2/9 - x^2/16 = 1$

9.6 Translate and Classify Conic Sections

- Remember when we studied quadratics and absolute value equations?
- $oy = a(x h)^2 + k$
- o h is how far the graph moved right
- o k is how far the graph moved up
- We can apply this concept for conics, too.

9.6 Translate and Classify Conic Sections

• Circle: $(x - h)^2 + (y - k)^2 = r^2$

	Horizontal Axis	Vertical Axis
• Parabola:	$(y-k)^2 = 4p(x-h)$	$(x-h)^2 = 4p(y-k)$

• Ellipse:
$$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1 \qquad \frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$$

• Hyperbola:
$$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$$

$$\frac{(y-k)^2}{a^2} - \frac{(x-h)^2}{b^2} = 1$$

9.6 Translate and Classify Conic Sections

- How to graph
 - Find the center/vertex (h, k)
 - Graph the rest as before

o Graph

$$(x+1)^2 + (y-3)^2 = 4$$

$$(x+3)^2 - \frac{(y-4)^2}{4} = 1$$

Circle: center (-1, 3), radius = 2

Hyperbola: center (-3, 4), a = 1, b = 2

- Write equations of a translated conic
 - Graph known points to determine horizontal or vertical axis
 - Find the center/vertex to give (h, k)
 - Use the known points to find a and b (or p)

• Write an equation of a parabola with vertex (3, -1) and focus at (3, 2).

• Write an equation of a hyperbola with vertices (-7, 3) and (-1, 3) and foci (-9, 3) and (1, 3).

Parabola: h = 3, k = -1; p = distance from focus to vertex = 3.
Vertical axis:
$$(x - h)^2 = 4p(y - k) \rightarrow (x - 3)^2 = 4(3)(y + 1) \rightarrow (x - 3)^2 = 12(x + 1)$$

Hyperbola: Horizontal axis

Center midpoint between vertices:
$$\left(\frac{-1+(-7)}{2}, \frac{3+3}{2}\right) \rightarrow (-4, 3)$$

a = distance from center to vertex = 3
c = distance from center to focus = 5
 $c^2 = a^2 + b^2 \rightarrow 5^2 = 3^2 + b^2 \rightarrow 16 = b^2 \rightarrow b = 4$
 $\frac{(x+4)^2}{9} - \frac{(y-3)^2}{16} = 1$

- Identify lines of symmetry
- Conics are symmetric along their axes which go through their center/vertex

$$\frac{(x-5)^2}{64} + \frac{y^2}{16} = 1$$

$$(x+5)^2 = 8(y-2)$$

Ellipse: center $(5, 0) \rightarrow$ lines of symmetry: x = 5; y = 0

Parabola: vertex (-5, 2) \rightarrow vertical axis: line of symmetry: x = -5

- o Classifying Conics from general equations
- $Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$
- Discriminant: B² 4AC
- $B^2 4AC < 0$, B = 0 and A = C

• $B^2 - 4AC < 0, B \neq 0 \text{ or } A \neq C$

Circle Ellipse

B² - 4AC < 0, B ≠ 0 or A ≠ C
 B² - 4AC = 0

Parabola

• $B^2 - 4AC > 0$

Hyperbola

- If B = 0, the axes are horizontal or vertical.
- If $B \neq 0$, the axes are rotated

• An asteroid's path is modeled by $4x^2 + 6.25y^2 - 12x - 16 = 0$ where x and y are in astronomical units from the sun. Classify the path and write its equation in standard form.

A = 4, B = 0, C = 6.25
B² - 4AC = 0² - 4(4)(6.25) = -100
$$\rightarrow$$
 ellipse

Complete the square in x and y to get in standard form.

$$4x^{2}-12x + 6.25y^{2} = 16$$

$$4(x^{2}-12x +?) + 6.25y^{2} = 16 + 4(?)$$

$$4(x^{2}-3x + (3/2)^{2}) + 6.25y^{2} = 16 + 4(2.25)$$

$$4(x-1.5)^{2} + 6.25y^{2} = 25$$

$$\frac{4(x-1.5)^{2}}{25} + \frac{6.25y^{2}}{25} = 1$$

$$\frac{(x-1.5)^{2}}{6.25} + \frac{y^{2}}{4} = 1$$

- You have already learned how to solve systems using
 - Graphing
 - Substitution
 - Elimination
- You can use all three methods to solve quadratic systems.

Solve using substitution

$$y^{2} - 2x - 10 = 0$$

$$y = -x - 1$$

$$y^{2} - 2x - 10 = 0$$

$$y = -x - 1$$

$$(-x - 1)^{2} - 2x - 10 = 0$$

$$x^{2} + 2x + 1 - 2x - 10 = 0$$

$$x^{2} - 9 = 0$$

$$x^{2} = 9$$

$$x = \pm 3$$

$$y = -(3) - 1 = -4$$

y = -(-3) - 1 = 2

Solve using elimination

$$x^{2} + 4y^{2} + 4x + 8y = 8$$
$$y^{2} - x + 2y = 5$$

$$x^{2} + 4y^{2} + 4x + 8y = 8$$

$$y^{2} - x + 2y = 5$$

$$x^{2} + 4y^{2} + 4x + 8y = 8$$

$$-4y^{2} + 4x - 8y = -20$$

$$x^{2} + 8x = -12$$

$$x^{2} + 8x + 12 = 0$$

$$(x + 6)(x + 2) = 0$$

$$x = -2, -6$$

$$y^{2} - x + 2y = 5$$

$$y^{2} + 2y - (x + 5) = 0$$

$$(y - 1)(y + 3) = 0$$

$$y = 1, -3$$
Points are (-2, 1), (-2, -3)
$$x = -6: y^{2} + 2y - (-6 + 5) = 0$$

$$(y + 1)^{2} = 0$$

$$y = -1$$
Points are (-6, -1)

- Solve by graphing calculator
 - Graph both equations
 - You will have to solve for y.
 - o If you have a \pm sign, then you will have to graph one equation for the + and one for the --
 - On TI-83/84
 - Push 2nd CALC
 - Choose "intersect"
 - Push enter for the first curve
 - Push enter for the second curve (you may have to use the up/down arrows to choose the right curve)
 - Use the left and right arrows to move the cursor to an intersection and push enter.
 - Repeat for the rest of the intersections

• Solve using a graphing calcula

$$x^2 + 8y^2 - 4 = 0$$
$$y = 2x$$

Points are (.34815531, .69631062), (-.34815531, -.69631062)

